Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(9): 107611, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664581

RESUMO

Non-muscle myosin II activation by regulatory light chain (Rlc1Sp) phosphorylation at Ser35 is crucial for cytokinesis during respiration in the fission yeast Schizosaccharomyces pombe. We show that in the early divergent and dimorphic fission yeast S. japonicus non-phosphorylated Rlc1Sj regulates the activity of Myo2Sj and Myp2Sj heavy chains during cytokinesis. Intriguingly, Rlc1Sj-Myo2Sj nodes delay yeast to hyphae onset but are essential for mycelial development. Structure-function analysis revealed that phosphorylation-induced folding of Rlc1Sp α1 helix into an open conformation allows precise regulation of Myo2Sp during cytokinesis. Consistently, inclusion of bulky tryptophan residues in the adjacent α5 helix triggered Rlc1Sp shift and supported cytokinesis in absence of Ser35 phosphorylation. Remarkably, unphosphorylated Rlc1Sj lacking the α1 helix was competent to regulate S. pombe cytokinesis during respiration. Hence, early diversification resulted in two efficient phosphorylation-independent and -dependent modes of Rlc1 regulation of myosin II activity in fission yeasts, the latter being conserved through evolution.

2.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762129

RESUMO

Autophagy, the process that enables the recycling and degradation of cellular components, is essential for homeostasis, which occurs in response to various types of stress. Autophagy plays an important role in the genesis and evolution of osteosarcoma (OS). The conventional treatment of OS has limitations and is not always effective at controlling the disease. Therefore, numerous researchers have analyzed how controlling autophagy could be used as a treatment or strategy to reverse resistance to therapy in OS. They highlight how the inhibition of autophagy improves the efficacy of chemotherapeutic treatments and how the promotion of autophagy could prove positive in OS therapy. The modulation of autophagy can also be directed against OS stem cells, improving treatment efficacy and preventing cancer recurrence. Despite promising findings, future studies are needed to elucidate the molecular mechanisms of autophagy and its relationship to OS, as well as the mechanisms underlying the functioning of autophagic modulators. Careful evaluation is required as autophagy modulation may have adverse effects on normal cells, and the optimization of autophagic modulators for use as drugs in OS is imperative.


Assuntos
Neoplasias Ósseas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Osteossarcoma , Humanos , Autofagia , Osteossarcoma/tratamento farmacológico , Homeostase , Neoplasias Ósseas/tratamento farmacológico
3.
Elife ; 122023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36825780

RESUMO

Cytokinesis, the separation of daughter cells at the end of mitosis, relies in animal cells on a contractile actomyosin ring (CAR) composed of actin and class II myosins, whose activity is strongly influenced by regulatory light chain (RLC) phosphorylation. However, in simple eukaryotes such as the fission yeast Schizosaccharomyces pombe, RLC phosphorylation appears dispensable for regulating CAR dynamics. We found that redundant phosphorylation at Ser35 of the S. pombe RLC homolog Rlc1 by the p21-activated kinases Pak1 and Pak2, modulates myosin II Myo2 activity and becomes essential for cytokinesis and cell growth during respiration. Previously, we showed that the stress-activated protein kinase pathway (SAPK) MAPK Sty1 controls fission yeast CAR integrity by downregulating formin For3 levels (Gómez-Gil et al., 2020). Here, we report that the reduced availability of formin For3-nucleated actin filaments for the CAR is the main reason for the required control of myosin II contractile activity by RLC phosphorylation during respiration-induced oxidative stress. Thus, the restoration of For3 levels by antioxidants overrides the control of myosin II function regulated by RLC phosphorylation, allowing cytokinesis and cell proliferation during respiration. Therefore, fine-tuned interplay between myosin II function through Rlc1 phosphorylation and environmentally controlled actin filament availability is critical for a successful cytokinesis in response to a switch to a respiratory carbohydrate metabolism.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Animais , Citocinese/fisiologia , Schizosaccharomyces/metabolismo , Forminas/metabolismo , Cadeias Leves de Miosina/metabolismo , Actomiosina/metabolismo , Fosforilação , Proteínas de Schizosaccharomyces pombe/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Proteínas do Citoesqueleto/metabolismo , Metabolismo dos Carboidratos
4.
Autophagy ; 19(4): 1311-1331, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36107819

RESUMO

Macroautophagy/autophagy is an essential adaptive physiological response in eukaryotes induced during nutrient starvation, including glucose, the primary immediate carbon and energy source for most cells. Although the molecular mechanisms that induce autophagy during glucose starvation have been extensively explored in the budding yeast Saccharomyces cerevisiae, little is known about how this coping response is regulated in the evolutionary distant fission yeast Schizosaccharomyces pombe. Here, we show that S. pombe autophagy in response to glucose limitation relies on mitochondrial respiration and the electron transport chain (ETC), but, in contrast to S. cerevisiae, the AMP-activated protein kinase (AMPK) and DNA damage response pathway components do not modulate fission yeast autophagic flux under these conditions. In the presence of glucose, the cAMP-protein kinase A (PKA) signaling pathway constitutively represses S. pombe autophagy by downregulating the transcription factor Rst2, which promotes the expression of respiratory genes required for autophagy induction under limited glucose availability. Furthermore, the stress-activated protein kinase (SAPK) signaling pathway, and its central mitogen-activated protein kinase (MAPK) Sty1, positively modulate autophagy upon glucose limitation at the transcriptional level through its downstream effector Atf1 and by direct in vivo phosphorylation of Rst2 at S292. Thus, our data indicate that the signaling pathways that govern autophagy during glucose shortage or starvation have evolved differently in S. pombe and uncover the existence of sophisticated and multifaceted mechanisms that control this self-preservation and survival response.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Glucose/metabolismo , Autofagia/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais/genética , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição/metabolismo
5.
J Fungi (Basel) ; 7(6)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198697

RESUMO

Mitogen activated protein kinase (MAPK) signaling pathways execute essential functions in eukaryotic organisms by transducing extracellular stimuli into adaptive cellular responses. In the fission yeast model Schizosaccharomyces pombe the cell integrity pathway (CIP) and its core effector, MAPK Pmk1, play a key role during regulation of cell integrity, cytokinesis, and ionic homeostasis. Schizosaccharomyces japonicus, another fission yeast species, shows remarkable differences with respect to S. pombe, including a robust yeast to hyphae dimorphism in response to environmental changes. We show that the CIP MAPK module architecture and its upstream regulators, PKC orthologs Pck1 and Pck2, are conserved in both fission yeast species. However, some of S. pombe's CIP-related functions, such as cytokinetic control and response to glucose availability, are regulated differently in S. japonicus. Moreover, Pck1 and Pck2 antagonistically regulate S. japonicus hyphal differentiation through fine-tuning of Pmk1 activity. Chimeric MAPK-swapping experiments revealed that S. japonicus Pmk1 is fully functional in S. pombe, whereas S. pombe Pmk1 shows a limited ability to execute CIP functions and promote S. japonicus mycelial development. Our findings also suggest that a modified N-lobe domain secondary structure within S. japonicus Pmk1 has a major influence on the CIP signaling features of this evolutionarily diverged fission yeast.

6.
Elife ; 92020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32915139

RESUMO

Cytokinesis, which enables the physical separation of daughter cells once mitosis has been completed, is executed in fungal and animal cells by a contractile actin- and myosin-based ring (CAR). In the fission yeast Schizosaccharomyces pombe, the formin For3 nucleates actin cables and also co-operates for CAR assembly during cytokinesis. Mitogen-activated protein kinases (MAPKs) regulate essential adaptive responses in eukaryotic organisms to environmental changes. We show that the stress-activated protein kinase pathway (SAPK) and its effector, MAPK Sty1, downregulates CAR assembly in S. pombe when its integrity becomes compromised during cytoskeletal damage and stress by reducing For3 levels. Accurate control of For3 levels by the SAPK pathway may thus represent a novel regulatory mechanism of cytokinesis outcome in response to environmental cues. Conversely, SAPK signaling favors CAR assembly and integrity in its close relative Schizosaccharomyces japonicus, revealing a remarkable evolutionary divergence of this response within the fission yeast clade.


Assuntos
Actomiosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citocinese/fisiologia , Forminas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mitose/fisiologia , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo
7.
mBio ; 11(1)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911490

RESUMO

RNA-binding proteins (RBPs) play a major role during control of mRNA localization, stability, and translation and are central to most cellular processes. In the fission yeast Schizosaccharomyces pombe, the multiple K homology (KH) domain RBP Rnc1 downregulates the activity of the cell integrity pathway (CIP) via stabilization of pmp1+ mRNA, which encodes the Pmp1 phosphatase that inactivates Pmk1, the mitogen-activated protein kinase (MAPK) component of this signaling cascade. However, Rnc1 likely regulates the half-life/stability of additional mRNAs. We show that Rnc1 downregulates the activity of Sty1, the MAPK of the stress-activated MAPK pathway (SAPK), during control of cell length at division and recovery in response to acute stress. Importantly, this control strictly depends on Rnc1's ability to bind mRNAs encoding activators (Wak1 MAPKKK, Wis1 MAPKK) and downregulators (Atf1 transcription factor, Pyp1 and Pyp2 phosphatases) of Sty1 phosphorylation through its KH domains. Moreover, Sty1 is responsible for Rnc1 phosphorylation in vivo at multiple phosphosites during growth and stress, and these modifications trigger Rnc1 for proper binding and destabilization of the above mRNA targets. Phosphorylation by Sty1 prompts Rnc1-dependent mRNA destabilization to negatively control SAPK signaling, thus revealing an additional feedback mechanism that allows precise tuning of MAPK activity during unperturbed cell growth and stress.IMPORTANCE Control of mRNA localization, stability, turnover, and translation by RNA-binding proteins (RBPs) influences essential processes in all eukaryotes, including signaling by mitogen-activated protein kinase (MAPK) pathways. We describe that in the fission yeast Schizosaccharomyces pombe the RBP Rnc1 negatively regulates cell length at division during unperturbed growth and recovery after acute stress by reducing the activity of the MAPK Sty1, which regulates cell growth and differentiation during environmental cues. This mechanism relies on Rnc1 binding to specific mRNAs encoding both enhancers and negative regulators of Sty1 activity. Remarkably, multiple phosphorylation of Rnc1 by Sty1 favors RBP binding and destabilization of the above mRNAs. Thus, posttranscriptional modulation of MAP kinase signaling by RNA-binding proteins emerges as a major regulatory mechanism that dictates the growth cycle and cellular adaptation in response to the changing environment in eukaryotic organisms.


Assuntos
Desoxirribonucleases/metabolismo , Retroalimentação Fisiológica , Sistema de Sinalização das MAP Quinases , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Estresse Fisiológico , Desoxirribonucleases/genética , Modelos Biológicos , Mutação , Fosforilação , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...